ALKYLGLYCOSIDE CARBONATES OF 3'-AZIDO-3'-DEOXYTHYMIDINE

Sylvie Pochet¹, Vinod Kansal¹, Florence Destouesse² and Simon R. Sarfati¹

Institut Pasteur, ¹Unité de Chimie Organique, ² Unité d'Oncologie Virale, associees au CNRS, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France.

Abstract : Analogues of 3'-azido-3'-deoxythymidine (AZT) were synthesized by coupling glycosides and AZT through a carbonate bridge. The glycosides were prepared by treatment of 6-benzyloxy-1-hexanol (1) with 2-methyl-3,4,6-tri-O- α cetyl-1,2-dideoxy- α -D-glucopyrano-[2,1-d]-2-oxazoline (2) and tetra-O-benzoyl- α -D-mannopyranosyl bromide (3), followed by 0-deprotection, persilylation and catalytic hydrogenolysis to give the alcohols 10 and 11, respectively. Condensation of 10 and **11** with AZT in the presence of l,l'-carbonyldiimidazole, followed by removal of the silyl groups, afforded the title compounds.

The flow of molecules and ions between a cell and its environment is precisely regulated by specific transport systems through membranes, and glucose enters most cells by a specific carrier or active-transport system.

Recently, 6- and l-substituted glycosyl phosphotriesters have been proposed as lipophilic carriers of antiviral nucleosides¹. We propose as a new drug carrier a system which comprises as the hydrophilic part a glycoside with the 6-position free, and as the lipophilic part an alkyl chain; the molecule to be carried inside the cell is linked to the glycoside at position 1 via the alkyl chain with a carbonate group. The drug would be liberated inside the cell either by cellular enzymes, or by spontaneous hydrolysis of the carbonate. As an example, we describe the drug conjugates 14 and 15 , in which AZT, a potent anti AIDS agent², is linked to the glycoside by its 5' end.

The preparation of these AZT analogues required glycosides with a free hydroxyl group, which were synthesized according to Scheme 1. 6-Benzyloxy-lhexanol 1^3 was condensed with 2-methyl-3,4,6-tri-O-acetyl-1,2-dideoxy- α -Dglucopyrano- $[2,1-d]$ -2-oxazoline 2⁴ and with tetra-O-benzoyl- α -D-mannopyranosyl bromide 3^5 , to afford the fully protected glycosides 4 (55% yld) and 5 (57% yld) respectively. Treatment of 4 and 5 with sodium methoxide afforded the corresponding deprotected glycosides 6 (88% yld) and 7 (81% yld). The osides were blocked as their tri- and tetra-tert-butyldimethylsilyl (TBDMS) ethers 8 (70% yld) and 9 (59% yld), respectively; these reactions were not complete even with a large excess of silylating agent. Catalytic hydrogenolysis of 8 and 9 over 10% palladiumon-charcoal in ethanol afforded syrupy $10⁶$ and $11⁷$, in 70% and 91% ylds.

The free primary hydroxyl of the glycosides was condensed with the 5' hydroxyl of AZT in a one-flask procedure (Scheme 2). AZT was first treated with 1.1 equiv. of l,l'-carbonyldiimidazole in acetonitrile for l/2 h at room temperature. After addition of the glycosides 10 or 11 (0.9-1 equiv.), the reaction mixture was refluxed overnight, affording 12^8 (70% yld) or 13^9 (53% yld). Subsequent desilylation with 1M TBAF in THF afforded the 5'-(1-alkyl glycoside) carbonates of AZT 14^{10} and 15^{11} . The purity of the compounds 14 and 15 was checked by analytical reverse-phase HPLC on a Nucleosil 5-Cl8 by using a gradient of acetonitrile (A) in a 0.05M triethylammonium acetate buffer (B) (pH 7.5) during 20 min. at a flow rate of 0.5 ml/min..

First, the stability of the carbonate bridge was checked in the buffer (RPM1 1640, Gibco OSI) and the medium (RPM1 1640, 1% glutamine, 5% foetal calf serum and 100 IU/ml penicillin, 100 μ g/ml streptomycin) used in the activity tests. The preliminary activity of these compounds was measured on CEM-CI13 cell lines¹². Two parameters were studied to evaluate the antiviral activity of the compounds (at doses 2 to 20 μ g/ml final): inhibition of HIV-1 induced cytopathic effect using the MTT cell viability assay, and the inhibition of the reverse transcriptase (RT) production in culture supematant, at day 6 and day 10. The reference compound AZT (obtained from SIGMA) was included in this assay. The two compounds were devoided of toxicity at day 6, or displayed a toxicity equivalent to AZT at day 10 for CEM-C113 cells. The compound 15 was unable to inhibit the HIV-l induced cytopathic effect (CPE) in cells and the RT production after day 10 post infection. The compound 14 totally (day 6) and partially (day 10) inhibited the CPE in CEM-C113 cells. This antiviral activity was correlated with decreasing of the reverse transcriptase activity (RTA).

These preliminary results revealed that the compound 15 showed any significant activity, at a concentration up to 20 mg/ml. The compound 14 was clearly active on HIV-l induced CPE cells, and decreased RT activity by 90% as compared to control virus (untreated cells).

References:

1. F. Iglesias Guerra, J.M. Neumann and T. Huynh-Dinh, Tefrahedron *Lett.* 1987.4,

3581; J.M. Neumann, M. Hervé, J.C. Debouzy, F. Iglesias Guerra, C. Gouyette, B. Dupraz and T. Huynh-Dinh, *J. Am. Chem. Soc.* 1989, 111, 4270; C. Gouyette, J.M. Neumann, R. Fauve and T. Huynh-Dinh, *Tetrahedron Lett.* 1989, 4, 6019.

2. T.-S. Lin and N.H. Prusoff, J. Med. *Chem. 1978, &* 109; H. Mitsuya, K.J. Weinhold, P.A. Furman, M.H. St. Clair, S. Nusinoff-Lehrman, R.C. Gallo, D. Bolognesi, D.W. Barry

and S. Broder, *Proc. Natl. Acad. Sci. USA.* 1985, 82, 7096.

3. M.P. Collins and H. Eder, J. *Chem. Sot. Perkin Trans 11984, 1525.*

4. F. Bach and H.G. Fletcher, unpublished procedure quoted in K.L. Matta and O.P. Bahl, *Carbohydr. Res.* 1972, 21, 460.

5. R.K. Ness, H.G. Fletcher Jr and C.S. Hudson, *J. Am. Chem. Soc.* 1950, 72, 2200.

6. 10: lH-NMR (300 MHz, CDC13) 8 0.04, 0.08 and 0.10 (as, 18H, CH3Si); 0.90 and 0.94 (3s. 27H, tBuSi); 1.38 (m, 4H, CH2); 1.56 (m, 4H, CH2); 1.74 (m. lH, OH); 1.94 (s, 3H, CH3CO); 3.32 (td, lH, CH-0, J = 6.5 Hz, J = 9.5 Hz); 3.63 (t, 2H, CH20H, J = 6.5 Hz); 3.65-3.80 (m, 4H, CH-0, H-3, H-5 and H-6); 3.94 (m, lH, H-6); 4.07 (broad d, lH, H-2, $J2$, NH = 9 Hz); 4.31 (t, 1H, H-4, $J3.4 = J4.5 = 9.5$ Hz); 4.59 (s, 1H, H-1); 6.83 (d, 1H, NH-COCH3, $J2, NH = 9.5$ Hz); M.S. (C.I., NH3): 664 (M+H), 546; TLC 0.50 (hexane/ethylacetate, 1:10).

7. 11: ¹H-NMR (300MHz, CDCl₃) δ 0.04 (s, 24 H, CH₃Si); 0.83 (s, 36H, tBuSi); 1.33 (m, 4H, CH2); 1.52 (m, 4H, CH2); 1.63 (m, lH, OH); 3.33 (m, lH, CH-0); 3.51 (t, 2H, CH20Bn, $J = 8$ Hz); 3.61-3.80 (m, 7H, H-2, H-3, H-4, H-5, H-6', H-6" and CH-O); 4.68 (d, 1H, H-1, $J_{1,2} = 1$ Hz); M.S. (C.I., NH3): 754 (M + 18), 737 (M + H), 636, 619; TLC 0.20 (hexane/ethylacetate, 5:100)..

8. 12: ¹H-NMR (300 MHz, CDCl₃) δ 0.05-0.10 (m, 6H, CH₃Si); 0.88 and 0.93 (2s, 27 H, tBuSi); 1.37 (m, 4H, CH2); 1.53 (m, 2H, CH2CH20); 1.67 (t. 2H, CH2-CH2-OCO); 1.93 and 1.94 (2s, 6H, CH_3 -C5 and CH_3 -CONH); 2.37 (m, 1H, H-2'); 2.45 (m, 1H, H-2"); 3.30 (dt, lH, CH-0); 3.65-3.80 (m, 3H, CH-0, H-5' and H-5"); 3.70 (s, lH, H-4'); 4.18 (m, 2H, CH₂OCO); 4.29 (m, 1H, H-3'); 4.57 (s, H, H-1); 6.24 (t, 1H, H-1', J_{1',2'} = 6.25 Hz); 6.84 (d, lH, NHCOCH3, J2,NH = 9.43 Hz); 7.39 (s, lH, H-C6); 9.14 (d, lH, NH-C3, J = 9.14 Hz). M.S. (FAB+): 957.55 (MH+); TLC 0.49 (hexane/ethylacetate, 1:3).

9. 13: lH-NMR (300 MHz, CDCl3) 6 0.05-0.10 (m, 6H, CH3Si); 0.90 (s, 27H. tBuSi); 1.30 (m, 4H, CH2); 1.52 (m, 2H, CH20); 1.65 (m. 2H, CH2-CH20); 1.93 (s, 3H, CH3-C5); 2.30 (m, 1H, H-2'); 2.40 (m, 1H, H-2"); 3.50 (m, 2H, H-5' and H-5"); 3.70 (m, 1H, H-4'); 4.15 (m, 1H, H-3'); 4.52 (d, 1H, H-1, $J_{1.2} = 0.5$ Hz); 6.16 (t, 1H, H-1', $J = 6.2$ Hz); 7.26 (s, 1H, HC6); 8.61 (broad s, lH, NH-C3). M.S. (FAB-): 1028 (MH-); TLC 0.67 (hexane/ ethylacetate, 1:3).

10. 14: ¹H-NMR (300 MHz, DMSO-d₆) δ 1.35 (m, 4H, CH₂); 1.54 (m, 2H, CH₂-CH₂O); 1.66 (m, 2H, CH₂OCO); 1.92 (d, 3H, CH₃-C5); 2.03 (s, 3H, NHCOCH₃); 2.57 (t, 2H, H-2' and H-2", $J_1'_{1,2'} = 6.50$ Hz); 4.50 (d, 1H, H-1, $J_{1,2} = 7.5$ Hz); 6.23 (t, 1H, H-1', $J_1'_{1,2'} =$ 6.25 Hz); 7.56 (d, 1H, H-C6, J = 1.5 Hz). M.S. (FAB⁺): 637 (MNa⁺); RT 13.1 min. (5-70%) of A in B).

11. 15: ¹H-NMR (300 MHz, DMSO-d₆) δ 1.29 (m, 4H, 2 x CH₂); 1.55 (m, 4H, 2 x CH₂); 1.78 (s, 3H, CH3-C5); 2.32 (m, lH, H-2'): 2.42 (m, lH, H-2"); 4.05 (m, 3H, H-4'. H-5' and H-5"); 4.32 (t, 2H, CH2OCO); 4.50 (t, lH, H-3'), 4.58 (s, lH, H-l); 6.13 (t, lH, H-l'); 7.50 (s, lH, HC6); M.S. (FAB-): 572 (MH-); RT 13.2 min. (5-70% of A in B).

12. O. Schwartz, Y. Hénin, V. Maréchal and L. Montagnier, AIDS Res. Hum. Retov. 1988,&, 441.